首页 > 活动线报 > 每日福利 > 如何定义一款新的AI处理器?AI芯片案例分析

如何定义一款新的AI处理器?AI芯片案例分析

发布时间:2024-10-20 22:09:38来源: 13041198719
AI大模型的热潮不断,预计未来十年,AGI时代即将到来。但目前支撑AI发展的GPU和AI专用芯片,都存在各种各样的问题。 那么,在分析这些问题的基础上,我们能不能针对这些问题进行优化,重新定义一款能够支持未来十年AGI大模型的、足够灵活通用的、效率极高性能数量级提升的、单位算力成本非常低廉的、新的AI处理器类型?
 
01.首先分析场景特点,做好软硬件划分
 
1.1 一方面,AI处理器存在问题
 
差不多是从2015年前后,开始兴起了专用AI芯片的浪潮。以谷歌TPU为典型代表的各种架构的AI专用芯片,如雨后春笋般涌现。 但从AI落地情况来看,效果并不是很理想。这里的主要问题在于:
 
AI芯片专用设计,把许多业务逻辑沉到硬件里,跟业务紧密耦合;但业务变化太快,算法不断更新,芯片和业务的匹配度很低。
 
AI算法是专用的,面向具体场景,比如人脸识别、车牌识别,各种物品识别等。综合来看,算法有上千种,加上算法自身仍在快速演进,加上各种变种的算法甚至超过数万种。
 
用户的业务场景是综合性的,把业务场景比做一桌宴席,AI芯片就是主打的那道主菜。对AI芯片公司来说,自己只擅长做这一道菜,并不擅长做其他的菜品,更不擅长帮助用户搭配一桌美味可口、荤素均衡、营养均衡的宴席。
 
1.2 另一方面,GPU也存在问题
 
NVIDIA的GPU是通用并行处理器:
 
性能效率相对不高,性能逐渐见顶。要想算力提升,只能通过提升集群规模(Scale Out,增加GPU数量)的方式。
 
增加集群规模,受限于I/O的带宽和延迟。一方面,集群的网络连接数量为O(n^2),连接数量随着集群规模的指数级增加;另一方面,AI类的计算任务,不同节点间的数据交互本身就非常巨大。因此,受阿姆达尔定律影响,I/O的带宽和延迟,会约束集群规模的大小。(在保证集群交互效率的情况下,)目前能支持的集群规模大约在1500台左右。
 
还有另外一个强约束,就是成本。据称GPT5需要5万张GPU卡,单卡的成本在5W美金左右,再加上其他硬件和基础设施已经运营的成本。仅硬件开销接近50亿美金,即350亿RMB。这对很多厂家来说,是天文数字。
 
1.3 问题的核心:芯片的灵活性要匹配场景的灵活性
 
首先,仍然是从我们之前很多文章中提到的这个“从软件到硬件的典型处理器划分图”开始分析。
 
 
 
指令是处理器软件和硬件的媒介:有的指令非常简单,就是基本的加减乘除等标量计算;有的指令非常复杂,不是纯粹的向量、矩阵或多维张量计算,而是各种维度计算再组合的一个混合的宏指令,或者说是一个算子甚至算法,就对应到一条(单位计算)指令。 AI专用处理器是一种DSA,是在ASIC基础上具有一定的可编程能力。性能效率足够好,但不够灵活,不太适合业务逻辑和算法快速变化的AI场景。而GPU足够灵活,但性能效率不够,并且性能逐渐达到上限。 从目前大模型宏观发展趋势来看:
 
Transformer会是核心算法,在大模型上已经显露威力。未来模型的底层算法/算子会逐渐统一于Transformer或某个类Transformer的算法。从此趋势分析可得:AI场景的业务逻辑和算法在逐渐收敛,其灵活性在逐渐降低。
 
此外,AI计算框架也走过了百家争鸣的阶段,目前可以看到的趋势是,PyTorch占据了绝大部分份额。这说明整个生态也在逐渐收敛,整个系统的迭代也在放慢。
 
这两个趋势都说明了,未来,“专用”的AI芯片会逐渐地绽放光芒。当然了,作为AI芯片的公司,不能等,而是需要相向而行:
 
需要定义一款,其性能/灵活性特征介于GPU和目前传统AI-DSA处理器之间的,新型的通用AI处理器。“比GPU更高效,比AI芯片更通用”。
 
通用性体现在两个方面:
 
一方面,处理器的通用性。能够适配更多的算法差异性和算法迭代,覆盖更多场景和更长的生命周期。
 
另一方面,面向AGI通用人工智能。不再是专用AI的“场景千千万,处理器千千万”,架构和生态完全碎片;而是一个通用的强人工智能算法,一个通用的强处理器平台,去强智能化的适配各种场景。
 
02.大核少核 or 小核众核?
 
 
 
CPU是大核,但通常一个芯片里只有不到100个物理核心;而GPU是小核众核的实现,目前通常在上万个核左右;而传统AI芯片,通常是大的定制核+相对少量核(100核以内)的并行。
 
 
 
此外,一个很重要的现象是,GPU核,不再是之前只有CUDA核的标量处理器,而是增加了很多Tensor核的类协处理器的部分。新的GPU处理器不再在处理器核的数量上增加,反而把宝贵的晶体管资源用在单个核的协处理器上,把单核的能力做更多的强化。 因此,新型通用AI芯片需要:
 
在目前工艺情况下,并行的单芯片处理器核心(GA,通用AI处理器核心)数量在500-1000之间比较合适;
 
单个GA采用通用高效能CPU核(例如定制的RISC-v CPU)+强大的Tensor协处理器的方式。
 
03.极致扩展性,多层次强化内联交互
 

每日福利更多>>

2024年南通市海门中学面向2025届毕业生招聘教育人才公告 2024年南通市海门实验学校面向2025届毕业生招聘教育人才公告 2024年厦门一中集美分校(灌口中学)非在编(顶岗)教师招聘简章 2024年厦门市集美区杏滨小学非在编顶岗教师招聘简章 2024年长沙市直事业单位第三批招聘工作人员公告(72人) 2024年沈阳体育学院招聘急需短缺人才公告 2024年台州市椒江区委宣传部选聘工作人员公告 2024年宜春经济技术开发区招聘窗口服务编外人员公告 坚持技术创新,奔驰继续奔驰 2025年普洱教育体育局直属事业单位普洱市第一中学急需紧缺人才招聘招聘公告 2024年吉林省省直事业单位招聘考试公告(58名) 2024年丽水市直机关事业单位招录编外用工公告 2024年南充市委政策研究室下属事业单位考调工作人员公告 2024年吉林省省直事业单位白城师范学院招聘高层次人才公告 2024年金华市正信公证处招聘工作人员公告 2024年宁波市鄞州人民医院医共体东吴分院编外工作人员招聘公告 2025年山东第一医科大学附属内分泌与代谢病医院(山东省内分泌与代谢病研究所)招聘博士研究生工作人员简章 2025年台州市黄岩区卫健系统校园招聘卫技人员公告 红米K80系列,性价比王者的再次崛起 武汉极目智能程建伟:韩国现代3000多人赴北京车展学习中国汽车技术,公司老大点名体验小米SU7 2025款本田雅阁,标配10安全气囊,智驾升级,搭载1.5T发动机 李书福:吉利超级混动造出来了,并降本成功! 2025 款福特 Explorer ST——运动型 SUV 日系三强10月销量:丰田最稳,本田近乎腰斩,日产靠轩逸支撑 北京人开北京车,《爆款好人》热映,葛大爷也爱续航真实在的北京EU5! 24年1-9月全球汽车销量:丰田依旧领先,比亚迪能冲击年榜前三? 埃安RT:一场正当其时的突破 持续上涨,上汽大众10月销售12万辆! 华为ADS 3.0加持,豹8将11月12日上市,或售40万起 到店看过第五代胜达,才明白露营不是新能源车的专利